11 research outputs found

    Movers and Shakers: Kinetic Energy Harvesting for the Internet of Things

    Full text link
    Numerous energy harvesting wireless devices that will serve as building blocks for the Internet of Things (IoT) are currently under development. However, there is still only limited understanding of the properties of various energy sources and their impact on energy harvesting adaptive algorithms. Hence, we focus on characterizing the kinetic (motion) energy that can be harvested by a wireless node with an IoT form factor and on developing energy allocation algorithms for such nodes. In this paper, we describe methods for estimating harvested energy from acceleration traces. To characterize the energy availability associated with specific human activities (e.g., relaxing, walking, cycling), we analyze a motion dataset with over 40 participants. Based on acceleration measurements that we collected for over 200 hours, we study energy generation processes associated with day-long human routines. We also briefly summarize our experiments with moving objects. We develop energy allocation algorithms that take into account practical IoT node design considerations, and evaluate the algorithms using the collected measurements. Our observations provide insights into the design of motion energy harvesters, IoT nodes, and energy harvesting adaptive algorithms.Comment: 15 pages, 11 figure

    Project-based Learning within a Large-Scale Interdisciplinary Research Effort

    Full text link
    The modern engineering landscape increasingly requires a range of skills to successfully integrate complex systems. Project-based learning is used to help students build professional skills. However, it is typically applied to small teams and small efforts. This paper describes an experience in engaging a large number of students in research projects within a multi-year interdisciplinary research effort. The projects expose the students to various disciplines in Computer Science (embedded systems, algorithm design, networking), Electrical Engineering (circuit design, wireless communications, hardware prototyping), and Applied Physics (thin-film battery design, solar cell fabrication). While a student project is usually focused on one discipline area, it requires interaction with at least two other areas. Over 5 years, 180 semester-long projects have been completed. The students were a diverse group of high school, undergraduate, and M.S. Computer Science, Computer Engineering, and Electrical Engineering students. Some of the approaches that were taken to facilitate student learning are real-world system development constraints, regular cross-group meetings, and extensive involvement of Ph.D. students in student mentorship and knowledge transfer. To assess the approaches, a survey was conducted among the participating students. The results demonstrate the effectiveness of the approaches. For example, 70% of the students surveyed indicated that working on their research project improved their ability to function on multidisciplinary teams more than coursework, internships, or any other activity

    Movers and shakers: Kinetic energy harvesting for the internet of things

    No full text
    Abstract-Numerous energy harvesting mobile and wireless devices that will serve as building blocks for the Internet of Things (IoT) are currently under development. However, there is still only limited understanding of the energy availability from various sources and its impact on energy harvesting-adaptive algorithms. Hence, we focus on characterizing the kinetic (motion) energy that can be harvested by a mobile device with an IoT form factor. We first discuss methods for estimating harvested energy from acceleration traces. We then briefly describe experiments with moving objects and provide insights into the suitability of different scenarios for harvesting. To characterize the energy availability associated with specific human activities (e.g., relaxing, walking, and cycling), we analyze a motion dataset with over 40 participants. Based on acceleration measurements that we collected for over 200 hours, we also study energy generation processes associated with day-long human routines. Finally, we use our measurement traces to evaluate the performance of energy harvesting-adaptive algorithms. Overall, the observations will provide insights into the design of networking algorithms and motion energy harvesters, which will be embedded in mobile devices

    Difluorinated 6,13-Bis(triisopropylsilylethynyl)pentacene: Synthesis, Crystallinity, and Charge-Transport Properties

    No full text
    International audienceFluorination has been demonstrated to improve stability and processing in thiophene-containing small-molecule semiconductors. Here, the impact of partial fluorination on these parameters in a pentacene derivative is examined. Although the improvement in photostability is not as dramatic, there is a clear improvement in the stability of the chromophore upon fluorination. The improvement in processability is more dramatic; devices formed by spin-coating with the fluorinated derivative perform substantially better than those formed from the nonfluorinated compound

    Strongly correlated alignment of fluorinated 5,11-bis(triethylgermylethynyl)anthradithiophene crystallites in solution-processed field-effect transistors

    No full text
    International audienceThe crystallinity of an organic semiconductor film determines the efficiency of charge transport in electronic devices. This report presents a micro-to-nanoscale investigation on the crystal growth of fluorinated 5,11-bis(triethylgermylethynyl)anthradithiophene (diF-TEG-ADT) and its implication for the electrical behavior of organic field-effect transistors (OFETs). diF-TEG-ADT exhibits remarkable self-assembly through spin-cast preparation, with highly aligned edge-on stacking creating a fast hole-conducting channel for OFETs

    Movers and shakers

    No full text

    Decoupling the effects of self-assembled monolayers on gold, silver, and copper organic transistor contacts

    No full text
    International audienceIn bottom-contact organic field-effect transistors (OFETs), the functionalization of source/drain electrodes leads to a tailored surface chemistry for film growth and controlled interface energetics for charge injection. This report describes a comprehensive investigation into separating and correlating the energetic and morphological effects of a self-assembled monolayers (SAMs) treatment on Au, Ag, and Cu electrodes. Fluorinated 5,11-bis(triethylsilylethynyl) anthradithiophene (diF-TES-ADT) and pentafluorobenzenethiol (PFBT) are employed as a soluble small-molecule semiconductor and a SAM material, respectively. Upon SAM modification, the Cu electrode devices benefit from a particularly dramatic performance improvement, closely approaching the performance of OFETs with PFBT-Au and PFBT-Ag. Ultraviolet photoemission spectroscopy, polarized optical microscopy, grazing-incidence wide-angle X-ray scattering elucidate the metal work function change and templated crystal growth with high crystallinity resulting from SAMs. The transmission-line method separates the channel and contact properties from the measured OFET current–voltage data, which conclusively describes the impact of the SAMs on charge injection and transport behavior

    Supp File intracochlear microphone2 - Supplemental material for PVDF-Based Piezoelectric Microphone for Sound Detection Inside the Cochlea: Toward Totally Implantable Cochlear Implants

    No full text
    <p>Supplemental material, Supp File intracochlear microphone2 for PVDF-Based Piezoelectric Microphone for Sound Detection Inside the Cochlea: Toward Totally Implantable Cochlear Implants by Steve Park, Xiying Guan, Youngwan Kim, Francis (Pete) X. Creighton, Eric Wei, Ioannis(John) Kymissis, Hideko Heidi Nakajima and Elizabeth S. Olson in Trends in Hearing</p
    corecore